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The fast developing technology of optical multi-core fi-
bre (MCF) provides for the possibility of spatial division
multiplexing (SDM), enabling a scale-up in transmission
capacity per-fibre that is a crucial challenge in optical
communications [1, 2]. It is often assumed that though
addition of spatial channels is technically very different
from appending spectral channels, in terms of general
consideration and system management, SDM, in many
senses, is quite similar to technology of the wave-division
multiplexing (WDM). One of the goals of this work is to
point out that in MCF spatial channels may be very non-
equal and transfer of channel management approaches
from WDM to SDM is not always straightforward. For
instance, in WDM signal-to-noise ratio (SNR) is often
defined per spectral channel, assuming close to uniform
spectral power density distribution between channels. As
we will show below, in MCF configurations with a central
core (e.g. 7-core MCF [1, 2]), a steady state CW prop-
agation with equal power in all spatial channels is not
possible at all, making in this system the regime with
equal spatial channel powers inherently more prone to
cross talks. Therefore, signal-to-noise ratio is SDM sys-
tems should be defined in a way different to standard
WDM systems, taking into account difference between
spatial channels.
Another important emerging application of multi-core

fibre is in the field of high-power fibre lasers [3]. Non-
linear effects limit the power that can be transmitted in
a single mode fibre. In a multi-core fibre, light in each
core may be transmitted below threshold of the detri-
mental nonlinear effects while the total coherently com-
bined power can be high. MCF technology is used in
high brightness sources based on the coherent combin-
ing technique.
In both those major applications of MCF, nonlinear

interactions between light in different cores can criti-
cally affect system performance. Therefore, knowledge

of the limits imposed by the nonlinearity on coherent
transmission of light through the MCF is of high practi-
cal importance. Despite this, the nonlinear dynamics of
light in MCF is not yet well studied.
The mathematical analysis of nonlinear wave propa-

gation in multi-core fibres is also a generic problem with
numerous links to the theory of nonlinear discrete sys-
tems (see e.g. [4–7,9–12] and references therein). As was
already demonstrated in [4] in MCF with non-equal cores
(the most simple and general case is N peripheral cores
surrounding the central core), phase matching and sta-
ble coherent propagation are possible only due to non-
linear effects for a certain power balance between cores.
In [4] the stability problem of steady-state propagation
was solved in the radial approximation without consid-
eration of azimuthal perturbations. It has been shown
in [4] that, surprisingly, even at high light intensities,
stable coherent propagation is possible. In this Letter
we extend the stability analysis to the important case of
azimuthal perturbations, and we account for the possi-
bility of power transfer between peripheral cores. In the
optical communication context, our results provide the
underlying theory explaining why in the spatial-division-
multiplexing technique with MCF having a central core,
spatial power distribution (power per spatial channel)
should not be uniform, but instead has to be adjusted to
the multi-core fibre geometry, as described below.
The basic model considered here is a version of the

discrete nonlinear Schrödinger equation:

i
∂Ak

∂z
+

N∑
m=0

CkmAm+2γk|Ak|2Ak = 0; k = 0, ..., N (1)

Here Ak is the field in the k-th core (k = 1, 2, 3, .., N),
with A0 being the field in the central core; Cmk is the
coupling coefficient between modes m and k; Ck,k±1 =
C1(k ̸= 0), Ck,0 = C0, Ckk = βk. The coefficients related
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Fig. 1. The schematic depiction of the multi-core fibre
and power exchanges between cores.

to wave numbers and nonlinearity in peripheral cores,
without loss of generality, are assumed to be equal (βk =
β1 and γk = γ1). We assume though that, in general,
nonlinear coefficients in central and peripheral cores can
be different. It is convenient to re-write these equations
in normalized units:

i
∂U0

∂z
+

1

N

N∑
k=1

Uk +
2Nγ0
γ1

|U0|2U0 = 0, (2)

i
∂Uk

∂z
+(κ−2C)Uk+C(Uk+1+Uk−1)+U0+2|Uk|2Uk = 0,

(3)
Here we introduced normalized variables: A0,k =√
P0,1 U0,k e

iβ0Lz; z′ = z/L; L = 1/(C0

√
N), C =

C1/(C0

√
N), P0 = NP1 = N3/2C0/γ1, κ = (β1 −

β0+2C1)/(C0

√
N). The total (normalized by P0) power

Pt = N(|U0|2 + |U1|2), is a conserved quantity.
As was pointed out in [4] in the case of multiple pe-

ripheral cores surrounding a central core, even the exis-
tence of steady state solution is nontrivial. To provide
for coherent steady state CW light evolution in multiple
cores, the difference in propagation constants has to be
compensated by the nonlinear phase shifts:

{U0, Uk} = {A,B} × eiλz,Γ =
B

A
, (4)

|A|2 =
Pt

N(1 + Γ2)
, λ = Γ +

2γ0Pt

γ1(1 + Γ2)
. (5)

Γ4 −
(
κ+

2Pt

N

)
Γ3 −

(
κ− 2γ0Pt

γ1

)
Γ− 1 = 0. (6)

In this Letter we limit analysis only by the case
of in- and out-of-phase fields A and B, meaning real
values of Γ. More general case will be presented else-
where. The steady state solutions in such system is pos-
sible only with a certain imbalance (given by the factor
Γ2 = B2/A2) between powers propagating in central (A)
and ring (B) cores. The physics of this effect is rather
transparent - the power split is due to the nonlinear
phase shift contribution to the phase matching condi-
tion required for coherent propagation in multiple cores.

Fig. 2. Four values of Γ corresponding to different power
splits between cores as functions of total input power;
here γ0/γ1 = 0.5 and κ = 1. Here different curves for
each branch correspond to N varying from 3 to 12 (from
the bottom to the top, from left to right for green curve).

The amount of power that has to be coupled to each core
for steady state evolution given by solutions of (6) de-
pends on four parameters: (i) N , (ii) input power Pin (or
total power Pt), (iii) the linear phase mismatch κ, and
(iv) the ratio between the nonlinear coefficients γ0/γ1.
To get the idea of the solution structure, consider the
practically important case Pt >> 1. In this case, from
(6) we will get explicitly four families of solutions. In
the Γ1 = 2Pt/N and Γ3 = γ1/(2 γ0 Pt) most of the en-
ergy propagates in the ring or central core, respectively.
For Γ2,4 = ±

√
γ1N/γ0 the ratio of energy in the ring and

the central core is independent of the propagating power.
Negative Γ means out-of phase fields in the central and
peripheral cores.
Consider now the stability of steady state solutions of

(4-6) - the analogue of the modulation instability for a
low dimension discrete system. The small amplitude dis-
turbance is taken in a standard form {U0, Uk} = {A+a+
ib, B+ c+ id+(f + ih)eisk}× eiλz and k = 1, 2, 3, ..., N .
It is easy to see that perturbations of Uk proportional to
exp[pz] have an isotropic (k-independent) part (consid-
ered in [4]) and an angular (k-dependent) contribution.
Straightforward analysis shows that the angular part of
perturbations is independent of the isotropic part, and
the increment (growth rate) of instability due to angular
perturbations is:

p2l = (
1

Γl
+ 4C sin2[

s

2
])(

4Γ2
l Pt

N(1 + Γ2
l )

− 1

Γl
− 4C sin2[

s

2
]),

(7)
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here l = 1, 2, 3, 4 corresponds to four branches of CW
steady states. Recall that C = C1/(C0

√
N).

From periodicity condition s = 2πm/N with m =
1, 2, 3, ..., N . Note that the expression for the increment
Eq. 7 looks structurally exactly as the classical formula
for MI growth rate [13, 14]: p2l = Λ(αPt − Λ). However,
here Λ = 1/Γl + 4C sin2[s/2] is a discrete variable. The
Eq. 7 without the term 1/Γl describes the modulation
instability (MI) in discrete systems (see e.g. [7, 8, 12])
and in the limit s ≪ 1 transforms into conventional MI
growth rate [13, 14]. We see that the effect of a central
fiber 1/Γ plays a stabilizing role for positive Γ. For nega-
tive Γ, mode Γ4 - the presence of the central core enhance
the instability. We discuss below only the new features
introduced by the possibility of a positive Γ.
The minimal value of s = 2π/N , m = 1 gives the

threshold (in power) of the azimuthal modulation insta-
bility:

4Γ2
l Pt

N(1 + Γ2
l )

<
1

Γl
+ 4C sin2[

π

N
], (8)

Here Γl = Γl(N,Pt) is a function of N and Pt making
this equation an implicit condition on power. For contin-
uous case N → ∞ MI has no threshold. However, both
the discreteness and presence of a central core (with pos-
itive Γ) suppress the instability. The maximum growth
rate pmax is reached at:

2Γ2
l Pt

N(1 + Γ2
l )

=
1

Γl
+ 4C sin2[πm/N ], (9)

and is pmax = 2Γ2
l Pt/[N(1 + Γ2

l ], The instability is de-
veloped at the length L ∼ 1/pmax.
Analysis of the analytical asymptotic solutions (valid

at Pt >> 1) shows that only Γ3 is a stable solution (in
some range of parameters in the plane (N,Pt) shown by
color in Fig. 3). All other solutions Γ1,2,3 are unstable.
In the case of angular perturbations it is not possible to
derive an exact analytical expressions defining the sta-
bility zones for all values of Pt. The stability boundaries
for Pt not large can be found numerically. The calcula-
tions the sufficient conditions of stability and instability
for Γ3(N,Pt) and, thus, define stable and unstable ar-
eas in the plane (N,Pt) as illustrated by Figure 3: The
threshold curve (8) for Γ3, when big fraction of energy
is concentrated in the central core is presented in Fig.
3. The increment of instability p2 as a function of s for
Γ2 and Γ3 is depicted in Fig. 4 for various N and Pt.
We see that for the fixed Pt the growth rate is decreases
with the number of cores. The intensity in every core is
going down with N increase and modulation instability
is determined by the local radiation intensity. However,
one can see that the growth decrease is slower then 1/N
which indicates that the increase in core numbers makes
MCF more susceptive to the modulation instability.
The maximum power Pmax that can be transported

in a single core in unrelated to the threshold power Pth

Fig. 3. Angular stability area (shown by colour) of Γ3

(Γ1, Γ2 and Γ4 are unstable) corresponding to different
values of the total power Pt and N; here γ0/γ1 = 1 and
κ = 1

for the instability calculated above. Hence, our analy-
sis paves the way for design of MCF that will support
the stable propagation of the total power Pt well above
Pmax. The coherent output from the fiber end can be
then combined in one beam leading to the compact and
efficient beam combining scheme.
Nonlinear instability leads to periodic exchange of

power between cores. With a growing number of cores
these oscillations may become stochastic. As a result,
the instability makes power dynamics uncontrollable.
Therefore, knowledge of the criteria of instability onsets
is important for design of physical systems and devices
based on MCF. The considered instability is an extreme
discrete limit of the conventional modulation instabil-
ity in the continuous media and discrete systems (see
e.g. [7,12–14] and references therein). Due to the general-
ity of the master equations, we anticipate that our results
may provide new outlook at the traditional arrays of cou-
pled nonlinear waveguides [5–7, 9–12] We would like to
stress also that though the presented analysis deals with
the CW propagation, the obtained results are applied to
time dependent fibre communication channels. In that
case, the power should be understood as time-averaged
signal characteristics, such as the average signal power.
Note also that the presented theory can be generalized
in straightforward manner to pulse propagation in MCF.
As a matter of fact, in [15] the efficiency of nonlinear
matching through a fundamental soliton coupling from
one fibre into another was studied that has similarity
with CW power matching studied here. This paves a way
to numerous applications, for instance, a controlled Ra-
man red-shift and supercontinuum generation. To con-
clude, in this Letter we have presented a theory of an
instability including azimuthal perturbations of a steady
state CW propagation in multi-core fibre configurations
with a central core. In MCF with a central core, a steady
state CW propagation requires a power supported phase
matching. This has an important consequence for spa-

3



Fig. 4. Increment of instability p2 as a function of s for Γ2

and Γ4 corresponding to different Pt and N (red dashed
line - N = 6; solid blue - N = 12 and solid-dotted black
- N = 24).

tial division multiplexing. In the context of optical fibre
communications using MCF our results can be under-
stood in the following way. In the considered system of
multi-core fibres with a central core, a power per spa-
tial channel cannot be uniform in a stable propagation.
Stable propagation requires certain disbalance between
the power in a central core and other given by Γ2

l . This
disbalance depends on MCF geometry and other system
parameters as described above. In particular, this means

that signal-to-noise ratio should not be introduced per
spatial channel and more sophisticated definitions are re-
quired. The developed theory is rather generic and has
a number of applications from high power fibre lasers to
bulk nonlinear wave-guiding systems.
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